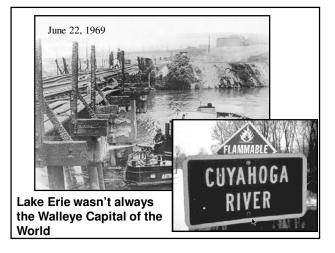

80:10:10 Rule

- 80% of water from upper lakes
- 10% direct precipitation
- 10% from Lake Erie tributaries
 - -Maumee
 - Largest tributary to Great Lakes
 - -Drains 4.5 million acres of ag land
 - 3% of flow into Lake Erie

Because of Land Use, Lake Erie Gets:

- · More sediment
- · More nutrients (fertilizers and sewage)
- More pesticides
- (The above 3 items are exacerbated by storms, which will be more frequent and severe due to climate change.)
- And Lake Erie is still biologically the most productive of the Great Lakes—And always will be!!



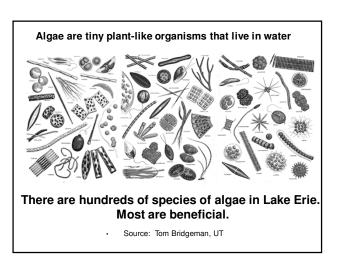
Lake Erie Stats

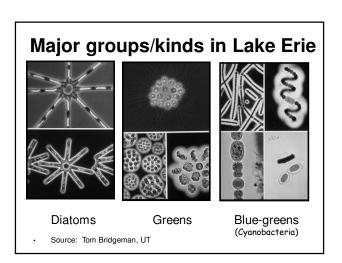
- · Drinking water for 11 million people
- Over 20 power plants
- · Power production is greatest water use
- · 300 marinas in Ohio alone
- · Walleye Capital of the World
- · 40% of all Great Lakes charter boats
- Ohio's charter boat industry is one of the largest in North America
- \$1.5 billion sport fishery
- · One of top 10 sport fishing locations in the world
- · Most valuable freshwater commercial fishery in the world
- Coastal county tourism value is over \$11.5 billion and 117,000 jobs

Lake Erie: One of the Most Important Lakes in the World

- · Dead lake image of 60s and 70s.
- Poster child for pollution problems in this country.
- But, most heavily utilized of any of the Great Lakes.
- Shared by 5 states, a province, and 2 countries.
- Best example of ecosystem recovery in world.

Impact of Ecosystem Recovery (rebirth)

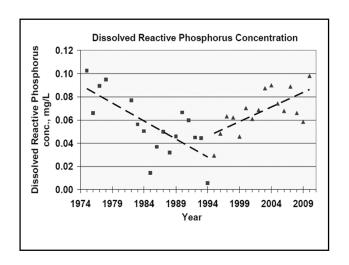

- Ohio walleye harvest 112,000 in 1976 to over 5 million by mid-80s
- 34 charter fishing businesses in 1975 to over 1200 by mid-80s and almost 800 today
- 207 coastal businesses to over 425 today

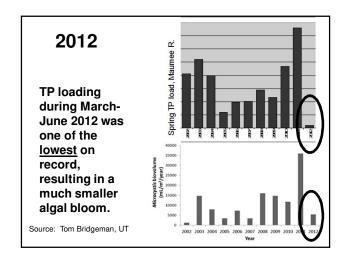

What brought about the rebirth (dead lake to Walleye Capital)?

 Phosphorus reductions from point sources (29,000 metric tons to 11,000); and agriculture helped!

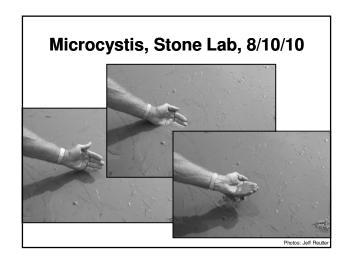
Why did we target phosphorus?

- Normally limiting nutrient in freshwater systems
- P reduction is best strategy ecologically and economically
- Reducing both P and N would help

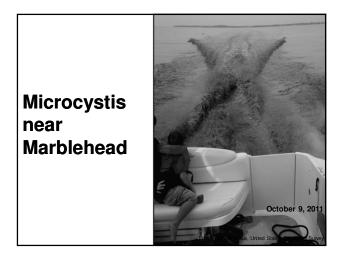

Impacts of Increased Phosphorus Concentrations

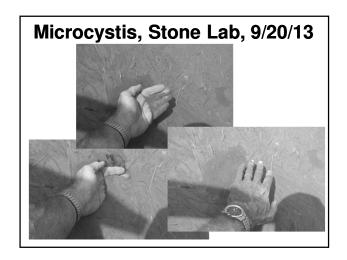

- HABs—If P concentrations are high (regardless of the source, Ag, sewage, etc.) and water is warm, we will have a HAB (nitrogen concentration will likely determine which of the ~10 species bloom)
- Nuisance Algae Blooms
 - Cladophora—Whole lake problem. An attached form.
 - Winter algal blooms
- Dead Zone in Central Basin

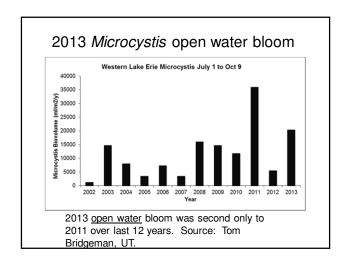
Blue-green Algae Bloom circa 1971, Lake Erie

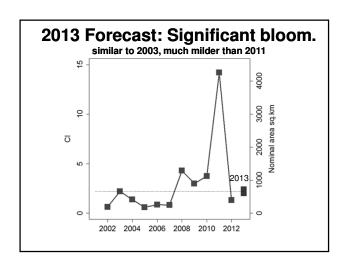

Photo: Forsythe and Reutter

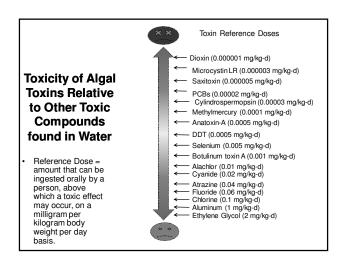


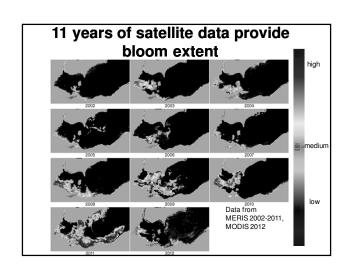


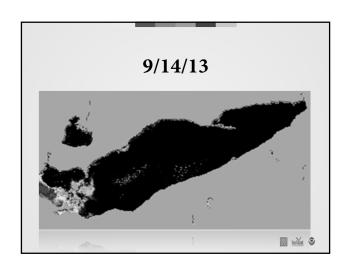

Lake Erie's 7 Biggest Problems/Issues (see *Twine Line*, Spring/Summer, 2012)


- Sedimentation
- · Phosphorus and nutrient loading
 - Harmful algal blooms
 - Western, Central, and Eastern Basin Differences
 - Different problems in different lakes (possibly more difficult than Lake Erie)
- · Aquatic invasive species
- Dead Zone—exacerbated by nutrients
- Climate Change—Makes the others worse
- Coastal Economic Development









Microcystin Concentrations

- 1 ppb WHO drinking water limit
- · 20 ppb WHO swimming limit
- 60 ppb highest level for Lake Erie till 2011
- 84 ppb highest level for Grand Lake St. Marys till 2010
- 2000+ Grand Lake St. Marys 2010
- 1200 Lake Erie Maumee Bay area 2011

2013 prediction for western Lake Erie: similar to 2003, <1/5 of 2011, 2X 2012 2011 for comparison 2013 may resemble 2003 2011 2003 medium concentration

October 12, 2013

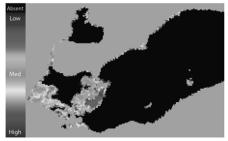


Figure 2. MODIS Cyanobacterial Index from 12 October 2013.

R. Stumpf, NOAA National Center for Coastal Ocean Science

2013

- Only blooms in 2011 and 2013 extended well into October.
- Toxins appeared in treated drinking water in 2013.
- Meris vs. Modis Limitations
- Greater recognition of of their role by agriculture community, but clearly not enough action.
 - When nutrients leave fields they are pollutants.

Are HABs only a Lake Erie and Ohio Problem?

- · Serious problem in US and Canada
- 21 states and Canada in 2012
- · Global problem
- Chaired Loadings and Targets Subcommittee for Ohio P Task Force
- Now US Co-Chair of the Loadings and Targets Task Team of Annex 4 (nutrients) Subcommittee of GLWQA
- Weather can determine how we experience a bloom

Target Loads to Solve Problem

- Leading subcommittee of the Ohio Phosphorus Task Force to identify both spring and annual target loads of both total P and DRP to prevent or greatly reduce HABs
- Target is 40% reduction

Nutrient Loading: Expect improvement

- Scotts P removal from over the counter fertilizer bags
- CSO's moving in right direction (too slow?)
- Detroit sewage—hopefully in compliance—but bankrupt
- Frequency of severe storms continues to go up
- Ag-expect improvement
 - · Farm Bureau is supporting efforts to reduce P
 - · Majority of farmers now accept responsibility
 - · Certification programs being developed
 - 4R Program
 - Recommendations
 - Don't apply more fertilizer than needed
 - Don't apply on frozen or snow covered ground
 - Don't broadcast, incorporate into soil
 - Don't apply before when rain in immediate forecast

What Can I Do?

- To stop HABs we have to either make it colder or put in less nutrients.
 - Reduce your carbon footprint (use less energy and sustainable sources of energy)
 - Reduce phosphorus input by 40%
 - Reduce flow to sewage treatment plant (Low-flow toilets and showerheads)
 - Reduce stormwater leaving property (rain barrels and rain gardens)
 - · Make sure septic tank is working
 - Encourage sewage treatment plant to eliminate CSO's and be willing to pay more for changes
 - · Use "0" P lawn fertilizer
 - · Use low P cleaning products

For more information: Dr. Jeff Reutter, Director

Ohio Sea Grant and

Stone Lab

Ohio State Univ.

1314 Kinnear Rd.

Col, OH 43212

614-292-8949

Reutter.1@osu.edu

ohioseagrant.osu.edu

Stone Laboratory Ohio State Univ.

Box 119

Put-in-Bay, OH 43456

614-247-6500